Aerodynamics of a Flapping-Perturbed Revolving Wing
نویسندگان
چکیده
منابع مشابه
Flapping wing aerodynamics: from insects to vertebrates.
More than a million insects and approximately 11,000 vertebrates utilize flapping wings to fly. However, flapping flight has only been studied in a few of these species, so many challenges remain in understanding this form of locomotion. Five key aerodynamic mechanisms have been identified for insect flight. Among these is the leading edge vortex, which is a convergent solution to avoid stall f...
متن کاملAerodynamics of tip-reversal upstroke in a revolving pigeon wing.
During slow flight, bird species vary in their upstroke kinematics using either a 'flexed wing' or a distally supinated 'tip-reversal' upstroke. Two hypotheses have been presented concerning the function of the tip-reversal upstroke. The first is that this behavior is aerodynamically inactive and serves to minimize drag. The second is that the tip-reversal upstroke is capable of producing signi...
متن کاملPassive Wing Rotation in Flexible Flapping Wing Aerodynamics
Insect wings are flexible. For rigid wings lift enhancing unsteady aerodynamics mechanisms, such as delayed stall via leading-edge vortices (LEVs), wake-capture, and rotational forces, characterize the lift generation of a hovering insect. We have uncovered a novel mechanism that fruit fly size insects can utilize to further increase the lift by adjusting its wing shape passively: A pair of a L...
متن کاملA CFD-informed quasi-steady model of flapping wing aerodynamics.
Aerodynamic performance and agility during flapping flight are determined by the combination of wing shape and kinematics. The degree of morphological and kinematic optimisation is unknown and depends upon a large parameter space. Aimed at providing an accurate and computationally inexpensive modelling tool for flapping-wing aerodynamics, we propose a novel CFD (computational fluid dynamics)-in...
متن کاملExperimental Investigation of Aerodynamics of Feather-Covered Flapping Wing
Avian flight has an outstanding performance than the manmade flapping wing MAVs. Considering that the feather is light and strong, a new type of the flapping wing was designed and made, whose skeleton is carbon fiber rods and covered by goose feathers as the skin. Its aerodynamics is tested by experiments and can be compared with conventional artificial flapping wings made of carbon fiber rods ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: AIAA Journal
سال: 2019
ISSN: 0001-1452,1533-385X
DOI: 10.2514/1.j056584